Thickness Measurement Methods for Physical Vapor Deposited Aluminum Coatings in Packaging Applications: A Review
نویسندگان
چکیده
The production of barrier packaging materials, e.g., for food, by physical vapor deposition (PVD) of inorganic coatings such as aluminum on polymer substrates is an established and well understood functionalization technique today. In order to achieve a sufficient barrier against gases, a coating thickness of approximately 40 nm aluminum is necessary. This review provides a holistic overview of relevant methods commonly used in the packaging industry as well as in packaging research for determining the aluminum coating thickness. The theoretical background, explanation of methods, analysis and effects on measured values, limitations, and resolutions are provided. In industrial applications, quartz micro balances (QCM) and optical density (OD) are commonly used for monitoring thickness homogeneity. Additionally, AFM (atomic force microscopy), electrical conductivity, eddy current measurement, interference, and mass spectrometry (ICP-MS) are presented as more packaging research related methods. This work aims to be used as a guiding handbook regarding the thickness measurement of aluminum coatings for packaging technologists working in the field of metallization.
منابع مشابه
A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition
In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...
متن کاملارزیابی چسبندگی و بارپذیری پوشش نانوساختار CrN-CrAlN بهروش رسوب فیزیکی بخار
Nitride coatings with excellent hardness and wear resistance have been deposited by physical vapor deposition (PVD) in recent years. For most applications, the load bearing and adhesion of coatings are very important and can determine the life and performance of the final components. In this study, CrN/CrAlN nanostructured coatings with different thicknesses and numberes of layers were deposite...
متن کاملNucleation mechanisms in chemically vapor-deposited mullite coatings on SiC
Dense, uniform, and adherent chemically vapor-deposited mullite coatings were deposited on SiC substrates using the AlCl3–SiCl4–H2–CO2 system. Typical coating morphology consisted of a thin interfacial layer of g–Al2O3 nanocrystallites embedded within a vitreous SiO2-based matrix. When a critical Al/Si ratio of 3.2 ± 0.29 was reached within this nanocrystalline layer, mullite crystals nucleated...
متن کاملThe Effect of Substrate Temperature and Biasing on Physical-Properties and Corrosion Resistance of CrN/Al 5083 Coatings
Aluminum alloys such as Al 5083 have primary potential for lightweight structural application in automotive and aerospace industries. This paper addresses the mechanical and tribological properties and corrosion resistance of chromium nitride coatings deposited on Al 5083 that can be used for development of applications of aluminum 5083 alloy. The CrN coatings of 1 μm thickness were deposited b...
متن کاملTi-Cr-N Coatings Deposited by Physical Vapor Deposition on AISI D6 Tool Steels
In this study, physical vapor deposition (PVD) Ti-Cr-N coatings were deposited at two different temperatures 100 and 400ºC on hardened and tempered tool steel substrates. The influence of the applied deposition temperature on the physical and mechanical properties of coatings such as roughness, thickness, phase composition, hardness and Young’s modulus were evaluated. Phase compositions were st...
متن کامل